ТЕМА 2 УПРАВЛЯЕМОСТЬ, НАБЛЮДАЕМОСТЬ И ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ДЛЯ НЕПРЕРЫВНОЙ И ДИСКРЕТНОЙ СИСТЕМ УПРАВЛЕНИЯ

2.1. Постановка и исследования задач управляемости линейных систем

Рассмотрим систему управления, которая описывается линейными дифференциальными уравнениями

$$\frac{dx(t)}{dt} = A(t)x(t) + B(t)u(t), \qquad (2.1)$$

где $x(t) = (x_1(t), ..., x_n(t))^T$, n-мерний вектор-столбец, $u(t) = (u_1(t), ..., u_m(t))^T - m$ -мерний вектор-столбец, A(t) - матрица размерности $n \times n$, B(t) - матрица размерности $n \times m$.

Отметим, что A(t) и B(t) считаются известными матрицами, элементы которых зависят от времени t .

Системы вида (2.1) называются нестационарными системами управления.

Определение 2.1. Система (2.1) называется вполне управляемой (completely controllable), если для двух произвольных точек x^0 , x^1 из фазового пространства X и двух произвольных значений t_0, t_1 аргумента t существует такая функция управления u(t), $t \in [t_0, t_1]$, при которой решение системы уравнений (2.1) удовлетворяет условиям: $x(t_0) = x^0$, $x(t_1) = x^1$.

Обозначим через $X(t,\xi)$ — фундаментальную матрицу для однородных уравнений $\frac{dx(t)}{dt} = A(t)x(t)$, соответствующих уравнениям (2.1), которая нормированная в точке $\xi \in [t_0,t_1]$. Введем матрицу $W(t,\xi) = X(t,\xi)B(\xi)$, которую называют матрицей импульсных переходных функций.

Считаем
$$W(t,\xi) = \begin{pmatrix} w_1(t,\xi) \\ \vdots \\ w_n(t,\xi) \end{pmatrix}$$
, где $w_i(t,\xi)$ – вектор-строка:
$$w_i(t,\xi) = (w_{i1}(t,\xi),...,w_{in}(t,\xi)) \;,\; i = \overline{1,n} \;. \tag{2.2}$$

Теорема 2.1.[4]. Для того, чтобы система (2.1) была вполне управляемой, необходимо и достаточно, чтобы вектор-функции $w_1(t,\xi),\dots,w_n(t,\xi)$ были линейно-независимыми на любом интервале $[t_0,t_1]$.

Заметим, что условия, приведенные в теореме 2.1, практически трудно использовать, так как матрица $W(t,\xi)$ наперед не задается и ее нужно рассчитывать каждый раз при новых значениях t и ξ . Поэтому желательно найти условия вполне управляемости, выражающиеся через матрицы A(t), B(t).

Рассмотрим этот вопрос для систем управления, в которых A, B — матрицы с постоянными элементами. Такие системы называются линейными стационарными системами:

$$\frac{dx}{dt} = Ax(t) + Bu(t). (2.3)$$

Теорема 2.2. Для вполне управляемости стационарной системы (2.3) n-го порядка необходимо и достаточно, чтобы

$$rangS_n = rang(B, AB, ..., A^{n-1}B) = n.$$
 (2.4)

Следствие 2.1. Если в системе (2.3) вектор управления u(t) одномерний, а B = b — столбец, то необходимое и достаточное условие вполне управляемости имеет вид:

$$\det(b, Ab, \dots, A^{n-1}b) \neq 0.$$
 (2.5)

Соотношения (2.4) и (2.5) называются критерием вполне управляемости Калмана для линейных стационарных систем.

Определение 2.2 (Вполне управляемость на заданном интервале). Нестационарная система (2.1) называется вполне управляемой на заданном интервале $[t_0,t_1]$, если для 2-х произвольных значений x^0,x^1 из фазового простанства X можно указать такую функцию управления u(t), $t \in [t_0,t_1]$, что решение этой системы удовлетворяет краевым условиям: $x(t_0) = x^0$, $x(t_1) = x^1$.

Теорема 2.3. Если для некоторого t из заданного промежутка $[t_0,t_1]$ выполняется условие

$$rang[z_1(t), z_2(t), ..., z_n(t)] = n,$$
 (2.6)

где

$$z_1(t) = B(t), \quad z_k(t) = A(t)z_{k-1}(t) - \frac{dz_{k-1}}{dt}, \ k = \overline{2, n},$$

то система (2.1) – вполне управляемая на заданном интервале.

Отметитм, что если вектор-функции $w_i(t,\xi)$, i=1,n при $t=t_1$ линейно-зависимые на заданном интервале $[t_0,t_1]$, то

$$rang[z_1(t), z_2(t), ..., z_n(t)] < n.$$
 (2.7)

2.2. Наблюдаемость в линейных системах управления

В теории управления рассматриваются задачи о наблюдаемости системы. Содержание этих задач: установить алгоритм определения части или всех фазовых координат системы при условии, что известна вторая часть фазовых координат или некоторые функции от этих координат, а также известная математическая модель системы управления в виде системы дифференциальных уравнений.

Рассмотрим задачу наблюдаемости для линейных систем вида

$$\frac{dx}{dt} = A(t)x(t), \qquad (2.8)$$

где x(t) - n-мерний вектор состояния системы, A(t) — матрица размерности $n \times n$ с известными елементами.

Определение 2.3. Задачу нахождения вектора x(t) состояния системы (2.8) или отдельных его компонент по известной на некотором интервале $[t_0, t_1]$ функции

$$y(t) = q^{T}(t)x(t), \qquad (2.9)$$

где q(t) — известная n -мерная вектор-функция, будем называть задачей наблюдаемости линейной системы (2.8). Функцию y(t) называют функцией (сигналом) выхода системы (2.8).

Замечание 2.1. Обобщение определения 2.3: найти вектор x(t) или отдельные его компоненты по известной вектор-функцией выхода

$$y(t) = G^{T}(t)x(t),$$
 (2.10)

где G(t) – известная матрица $n \times m$.

Определение 2.4. Если задача наблюдаемости (2.8), (2.9) (или (2.8), (2.10)) имеет решение, то система называется вполне наблюдаемой или частично наблюдаемой зависимости от того, все или часть компонент вектора x(t) удается установить.

Определение 2.5. Пара матриц A(t), G(t) называется наблюдаемой, если можно решить задачу наблюдаемости для системы (2.8) по вектору выхода (2.10).

Рассмотрим наиболее простые решения задач наблюдаемости.

Теорема 2.4. Пусть для каждого $t \in [t_0, t_1]$ существуют и известны n-1 производные от вектора выхода (2.10) системы (2.8). Тогда для существования решения задачи наблюдаемости для системы (2.8) в фиксированной точке t в виде линейной комбинации значений $y(t), y'(t), \dots, y^{(n-1)}(t)$ достаточно, чтобы

$$rang\widetilde{S}_n = n$$
, (2.11)

где $\widetilde{S}_n(t) = (G_1(t), G_2(t), \dots, G_n(t)),$ (2.12)

$$G_1^T(t) = G^T(t), \ G_{v+1}^T(t) = G_v^T(t)A(t) + \frac{dG_v^T(t)}{dt}, \ v = \overline{1, n-1}.$$
 (2.13)

Доказательство. Продифференцируем n-1 раз вектор-функцию (2.10) и получим n равенств

$$y(t) = G_1^*(t)x(t),$$

$$y'(t) = \left[\frac{dG_1^*(t)}{dt} + G_1^*(t)A(t)\right]x(t) = G_2^*(t)x(t),$$

$$\vdots$$

$$y^{(n-1)}(t) = \left[\frac{dG_{n-1}^*(t)}{dt^{n-1}} + G_{n-1}^*(t)A(t)\right]x(t) = G_n^*(t)x(t).$$

Перепишем эти уравнения в матричном виде

$$\begin{pmatrix} y(t) \\ \vdots \\ y^{n-1}(t) \end{pmatrix} = \begin{pmatrix} G_1^*(t) \\ \vdots \\ G_n^*(t) \end{pmatrix} x(t) = \widetilde{S}_n(t)x(t) . \tag{2.14}$$

Рассмотрим (2.14) как систему линейных алгебраических уравнений относительно компонент вектора x(t). Ее решение существует, если ранг матрицы системы равен n (достаточное условие). Поскольку ранг матрицы системы равен рангу $\widetilde{S}_n(t)$, то теорема доказана.

Замечание 2.2. Когда $G_1(t) = q(t)$, то условие (2.11) имеет вид:

$$\det \ \widetilde{S}_n(t) = \det(q_1(t), q_2(t), \dots, q_n(t)) \neq 0,$$
 (2.15)

где

$$q_1^T(t) = q^T(t), \ q_v^T(t) = q_{v-1}^T(t)A(t) + \frac{dq_{v-1}^T(t)}{dt}, \ v = 1, 2, ..., n.$$

Тогда для фиксированного t имеем:

$$x(t) = (\widetilde{S}_n^T(t))^{-1} \begin{pmatrix} y(t) \\ \vdots \\ y^{n-1}(t) \end{pmatrix}.$$
 (2.16)

(это следует из системы (2.14)).

Замечание 2.3. Если система уравнений (2.8) стационарная, то есть A(t) = A = const и $G_1(t) = const$ (або q(t) = const), то тогда мат-

рица \widetilde{S}_n , условия (2.11), (2.15) и формула (2.16) приобретут соответственно вид:

$$\widetilde{S}_n(t) = (G, A^T G, \dots, A^{T^{n-1}} G).$$

$$rang\widetilde{S}_n = rang(G, A^T G, \dots, A^{T^{n-1}} G) = n.$$
(2.17)

$$\det \widetilde{S}_n(t) = \det (q, A^T q, \dots, A^{T^{n-1}} q) \neq 0.$$
 (2.18)

$$x(t) = \begin{pmatrix} q^T \\ q^T A \\ \vdots \\ q^T A^{n-1} \end{pmatrix}^{-1} \begin{pmatrix} y(t) \\ y'(t) \\ \vdots \\ y^{n-1}(t) \end{pmatrix}. \tag{2.19}$$

Отметим, что решение задачи наблюдаемости через вектор выхода и его производные сложно использовать в практических приложениях, что связано с необходимостью численно находить производные данной функции выхода y(t).

2.3. Связь между наблюдаемостью и управляемостью в системах управления

Пусть имеем условие вполне управляемости:

$$rang(z_1(t), z_2(t), ..., z_n(t)) = n,$$
 (2.20)

где

$$z_1(t) = B(t), \quad z_k(t) = A(t)z_{k-1}(t) - \frac{dz_{k-1}(t)}{dt}, k = \overline{2,n}$$

для линейной нестационарной системы управления (2.1).

Запишем также условие вполне наблюдаемости для линейной си-

стемы
$$\frac{dx}{dt} = A(t)x(t)$$
 с выходом $y(t) = G^{T}(t)x(t)$:

$$rang(G_1(t), G_2(t), \dots, G_n(t)) = n,$$
 (2.21)

где

$$G_1^T(t) = G^T(t), \ G_{v+1}^T(t) = G_v^T(t)A(t) + \frac{dG_v^T(t)}{dt}, \quad v = \overline{1, n-1}.$$

Отметим, что условия (2.20), (2.21) сходны между собой по форме. Впрочем, существует связь между ними и по содержанию.

Теорема 2.5. Если выполняется условие вполне управляемости системы

$$\frac{dx}{dt} = -A^{T}(t)x(t) + G(t)u(t)$$
(2.22)

то выполняется условие (2.21) вполне наблюдаемости системы $\frac{dx}{dt} = A(t)x(t) \text{ с выходом } y(t) = G^T(t)x(t) \text{ .}$

Систему (2.22) называют сопряженной к системе управления (2.1). Таким образом, данная теорема позволяет сводить исследование задач наблюдаемости линейных систем к исследованию задач управляемости сопряженных систем. Это дает возможность использовать результаты, касающиеся управляемости, при решении задач наблюдаемости.

Рассмотрим случай, когда элементы матриц A,G не зависят от t и перенесем результаты по теории управляемости на задачу наблюдаемости.

Теорема 2.6. Для того чтобы существовало решение задачи наблюдаемости системы

$$\frac{dx}{dt} = Ax \tag{2.23}$$

с вектором выхода (измерений)

$$y = G^T x \tag{2.24}$$

необходимо и достаточно, чтобы выполнялось условие:

$$rang\widetilde{S}_n = rang(G, A^T G, \dots, A^{T^{n-1}} G) = n.$$
 (2.25)

Замечание 2.4. Чаще всего задачи наблюдаемости возникают в системах управления, поэтому они решаются параллельно с задачей

управления движением системы. В линейных системах, это означает, что задача наблюдаемости возникает не для системы $\frac{dx}{dt} = A(t)x(t) \text{ а для системы управления } \frac{dx}{dt} = Ax(t) + Bu(t), \text{ где } u(t)$ — m-мерний вектор управления. При этом вектор выхода $y(t) = G^T(t)x(t)$ имеет размерность m.

2.4. Идентификации параметров математических моделей динамических систем

Во многих случаях исследователям неизвестны как сама структура математических моделей системы управления, так и параметры моделей. Это приводит к необходимости оценки или самой структуры и параметров математической модели, или значений отдельных параметров при заданной заранее структуре модели. Рассмотрим задачу нахождения неизвестных параметров математической модели, если ее структура определена в виде системы линейных обыкновенных дифференциальных уравнений.

Задача нахождения (оценки) неизвестных параметров математической модели объекта исследования называется задачей идентификации.

Для иллюстрации подходов к решению проблем такого типа рассмотрим простейшую задачу идентификации.

Пусть состояние системы определяется вектором x(t) из n-мерного евклидова пространства и для некоторого значения аргумента t в результате измерений получены векторы

$$x(t), \frac{dx(t)}{dt}, \dots, \frac{d^n x(t)}{dt^n}.$$
 (2.26)

В этом случае задача идентификации заключается в нахождении такой матрицы размерности n, для которой выполнялись условия:

$$\frac{dx}{dt} = Ax,$$

$$\frac{d^2x}{dt^2} = A\frac{dx}{dt},$$

$$\dots$$

$$\frac{d^nx}{dt^n} = A\frac{d^{n-1}x}{dt^{n-1}}.$$
(2.27)

Если для известных измерений (2.26) существует матрица A, которая удовлетворяет соотношению (2.27), то задача идентификации системы имеет решение.

Обозначив строки матрицы A через векторы $a_1^T, a_2^T, ..., a_n^T$, уравнения (2.27) можно переписать в виде:

$$\frac{dx_j}{dt} = a_j^T x,$$
...
$$(j = 1, 2, ..., n). \quad (2.28)$$

$$\frac{d^n x_j}{dt^n} = a_j^T \frac{d^n x}{dt^n}$$

Рассматривая соотношение (2.28) при каждом значении j как систему линейных алгебраических уравнений относительно элементов строки $a_i^T = (a_{i1}, a_{i2}, ..., a_{in})$, можно записать

$$\begin{bmatrix} x^T \\ \frac{dx^T}{dt} \\ \vdots \\ \frac{d^{n-1}x^T}{dt^{n-1}} \end{bmatrix} a_j = \begin{bmatrix} \frac{dx_j}{dt} \\ \frac{d^2x_j}{dt^2} \\ \vdots \\ \frac{d^nx_j}{dt^n} \end{bmatrix}. \quad (j = 1, 2, ..., n). \quad (2.29)$$

Отсюда, условие существования решения системы (2.29) имеет вид:

$$\det\left(x, \frac{dx}{dt}, \dots, \frac{d^{n-1}x}{dt^{n-1}}\right) \neq 0.$$
 (2.30)

Если условие (2.30) выполняется, то это означает, что параметры a_j математической модели в этом случае определяются по формулам:

$$a_{j} = \begin{bmatrix} x^{T} \\ \frac{dx^{T}}{dt} \\ \vdots \\ \frac{d^{n-1}x^{T}}{dt^{n-1}} \end{bmatrix} \times \begin{bmatrix} \frac{dx_{j}}{dt} \\ \frac{d^{2}x_{j}}{dt^{2}} \\ \vdots \\ \frac{d^{n}x_{j}}{dt^{n}} \end{bmatrix}, \quad (j = 1, 2, ..., n). \quad (2.31)$$

В результате подстановки соотношений (2.27) в условие (2.30) нетрудно получить

$$\det(x, Ax, \dots A^{n-1}x) \neq 0$$
. (2.32)

Сравнив (2.32) с условием (2.5) вполне управляемости системы (2.3), можно сформулировать связь между задачами идентификации и управляемости: для существования решения задачи идентификации в виде математической модели $\frac{dx}{dt} = Ax$ при условии наблюдения вектора состояния x(t) достаточно, чтобы матрица A и вектор x(t) удовлетворяли условие (2.5) вполне управляемости системы (2.3), где b = x(t).

Подобную аналогию можно установить также между условиями идентификации и вполне наблюдаемости.

Поскольку матрица A заранее неизвестна, то на практике условие идентификации проверяют с помощью условия (2.30).

Заметим, что необходимое и достаточное условие поставленной задачи идентификации заключается в том, чтобы совпадали ранги основной и расширенной матриц в системе (2.29).

2.5. Управляемость, наблюдаемость и идентификация дискретных линейных систем управления

Важным разделом теории управления является исследование дискретных систем управления, то есть систем, которые меняют свое состояние в дискретные моменты времени. Заметим, что системы управления, в которых в управляющем устройстве используются процессоры, по своей природе являются дискретными системами, поскольку процессор меняет свое состояние (проводит вычисления) с определенной тактовой частотой.

Не вдаваясь в подробное описание процесса дискретизации непрерывных систем, будем считать, что уравнение движения дискретной линейной системы управления задаются в виде:

$$x(k) = A(k)x(k-1) + B(k)u(k-1), \qquad (2.33)$$

где $x(k) = x(t_k) - n$ -мерний вектор состояния системы в момент времени (в точке) t_k , $u(k-1) = u(t_{k-1}) - m$ -мерний вектор управления в момент времени t_{k-1} , A(k), B(k) — матрицы соответствующих размерностей, элементы которых зависят от момента времени t_k . Дискретный аргумент t_k принимает значения из заданной последовательности моментов времени

$$t_0 < t_1 < \ldots < t_{k-1} < t_k < t_{k+1} < \ldots < t_N < \ldots$$

Рассмотрим движение системы (2.33) на некотором интервале времени $[t^{(0)},t^{(1)}]$.

Определение 2.6. Линейную дискретную систему управления (2.33) будем называть вполне управляемой на заданном интервале от $t^{(0)} = t_k$ до $t^{(1)} = t_{k+N}$, если для двух произвольных состояний

 $x^{(0)} \in X$, $x^{(1)} \in X$, где X – множество допустимых состояний системы (2.33), существует такая последовательность управлений $u(k), u(k+1), \dots, u(k+N-1)$, с помощью которой система (2.33) переходит из состояния $x^{(0)} \in X$ в состояние $x^{(1)} \in X$, то есть $x(k) = x^{(0)}$, $x(k+N) = x^{(1)}$.

Теорема 2.8. Необходимым и достаточным условием вполне управляемости линейной дискретной системы (2.33) является условие:

$$rang(A(k+N)A(k+N-1)...A(k+2)B(k+1),A(k+N)A(k+N-1)...A(k+3)B(k+2),...,B(k+N)) = n.$$
 (2.34)

Замечание 2.5. Постановка задачи об управляемости дискретных систем имеет смысл при условии $Nm \ge n$.

Следствие 2.2. Для линейной стационарной дискретной системы (элементы матриц A(k) = A, B(k) = B не зависят от дискретного аргумента t_k , то есть постоянными) условие вполне управляемости (2.34) принимает вид

$$rang(B, AB, A^{n-1}B) = n,$$
 (2.35)

а в случае, когда матрица B является столбцом b, условие вполне управляемости приобретает вид

$$\det(b, Ab, A^{n-1}b) \neq 0$$
.

Рассмотрим задачу наблюдаемости для линейных дискретных систем.

Пусть задана дискретная система

$$x(k+1) = A(k+1)x(k)$$
 (2.36)

и известный т-мерный вектор выхода (измерений) системы

$$y(k) = G^{T}(k)x(k) \tag{2.37}$$

в дискретные моменты времени t_k, t_{k+1}, t_{k+N-1} .

Определение 2.7. Если по известной дискретной системой (2.36) и известным *m*-мерным вектором выхода (2.37) в дискретные мо-

менты времени t_k , t_{k+1} , t_{k+N-1} можно восстановить состояние системы, то такая система называется наблюдаемой дискретной системой.

Теорема 2.9. Для наблюдаемости системы (2.36) по известному выходу (2.37) необходимо и достаточно выполнения условия

$$rang(G(k), A^{T}(k)G(k+1), ...$$

$$..., A^{T}(k)A^{T}(k+1)...A^{T}(k+n-2)G^{T}(k+n-1)) = n.$$
(2.38)

Следствие 2.3. Если для матриц выполняется условие A(k) = A, G(k) = G, где матрицы A и G не зависящие от дискретного аргумента t_k , то условие наблюдаемости (2.38) приобретает вид

$$rang(G, A^TG, A^{T^{n-1}}G) = n$$
.

Следствие 2.4. Если выполняются условия следствия 2.3 и матрица G является столбцом g, то условие наблюдаемости записывается так:

$$\det(g, A^T g, A^{T^{n-1}} g) \neq 0.$$

Тогда восстановленный вектор состояния дискретной системы x(k) будет определяться по формуле:

$$x(k) = \begin{pmatrix} g^{T} \\ g^{T} A \\ \vdots \\ g^{T} A^{n-1} \end{pmatrix}^{-1} \begin{pmatrix} y(k) \\ y(k+1) \\ \vdots \\ y(k+n-1) \end{pmatrix}.$$
 (2.39)

Рассмотрим задачу идентификации для линейных дискретных систем. Пусть задана линейная стационарная дискретная система

$$x(k+1) = Ax(k)$$
, (2.40)

где A — неизвестна матрица размерности $n \times n$ с постоянными параметрами.

Определение 2.8. Если по известным значениям векторов $x(k), x(k+1), \ldots, x(k+n)$ состояния линейной стационарной системы (2.40) можно восстановить (найти) матрицу A, то система называется такой, которая может быть идентифицированной, а процесс нахождения матрицы A называется идентификацией системы.

Теорема 2.10. Если выполняется условие

$$\det(x(k), x(k+1), \dots, x(k+n-1)) \neq 0, \qquad (2.41)$$

то задача идентификации для линейной дискретной системы (2.40) по известным значениям векторов выхода имеет решение.

ЛИТЕРАТУРА

Основная

- 1. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М., 1983.
 - 2. Беллман Р. Динамическое программирование. М., 1960.
- 3. Брайсон А., Хо Ю-ши. Прикладная теория оптимального управления. Оптимизация, оценка и управление. М., 1972.
- 4. Бублик Б.Н., Кириченко Н.Ф. Основы теории управления. К., 1975.
- 5. Васильев Ф.П. Численные методы решения экстремальных задач. – М., 1980.
 - 6. Зубов В.И. Лекции по теории управления. М., 1975.
- 7. Моисеев Н.Н. Элементы теории оптимальных систем. М., 1975.
- 8. Острем К. Введение в стохастическую теорию оптимального управления. М., 1973.
 - 9. Атанс М., Фалб П. Оптимальное управление. М., 1968.
- 10. Флеминг У., Ришел Р. Оптимальное управление детерминированными и стохастическими системами. М., 1978.

Дополнительная

- 11. Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М., 1979.
- 12. Андреев Ю.Н. Управление конечномерными линейными объектами. М., 1976.
 - 13. Аоки М. Оптимизация стохастических систем. М., 1971.
 - 14. Балакришнан А.В. Теория фильтрации Калмана. М., 1984.
- 15. Бейко И.В., Бублик Б.Н., Зинько П.Н. Методы и алгоритмы решения задач оптимизации. К., 1983.
- 16. Болтянский В.Г. Математические методы оптимального управления. M., 1969.

- 17. Бублик Б.Н., Гаращенко Ф.Г., Кириченко Н.Ф. Структурнопараметрическая оптимизация и устойчивость динамики пучков. – К., 1985.
- 18. Бублик Б.Н., Данилов В.Я., Наконечный А.Г. Некоторые задачи наблюдения и управления в линейных системах / Учеб. пособие. К., 1988.
- 19. Габасов Р., Кириллова Ф. Качественная теория оптимальных процессов. М., 1971.
- 20. Гноенский Л.С., Каменский Г.А., Эльсгольц Л.Э. Математические основы теории управляемых систем. M., 1969.
- 21. Зайцев Г.Ф., Костюк В.И., Чинаев П.И. Основы автоматического управления и регулирования. К., 1977.
- 22. Иванов В.А., Фалдин Н.В. Теория оптимальных систем автома тического регулирования. М., 1981.
- 23. Калман Р., Фалб П., Арбиб М. Очерки по математической теории систем. М., 1971.
- 24. Кротов В.Ф., Гурман В.И. Методы и задачи оптимального управления. М., 1973.
- 25. Ли Э.Б., Маркус Л. Основы теории оптимального управления. М., 1972.
- 26. Матвеев Н.М. Методы интегрирования обыкновенных дифференциальных уравнений. Минск, 1974.
- 27. Моисеев Н.Н. Математические задачи системного анализа. М., 1981.
- 28. Пропой А.И. Элементы теории дискретных оптимальных процессов. М., 1973.
- 29. Растригин Л.А. Современные принципы управления сложными сис темами. М., 1980.
- 30. Сейдж Э.П., Уайт Ч.С. III. Оптимальное управление системами. М., 1982.
- 31. Федоренко Р.П. Приближенное решение задач оптимального управ ления. М., 1978.
- 32. Цыпкин Я.З. Основы теории автоматических систем. М., 1977.
- 33. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М., 1969.